A Probabilistic Modeling Framework for Lexical Entailment
نویسندگان
چکیده
Recognizing entailment at the lexical level is an important and commonly-addressed component in textual inference. Yet, this task has been mostly approached by simplified heuristic methods. This paper proposes an initial probabilistic modeling framework for lexical entailment, with suitable EM-based parameter estimation. Our model considers prominent entailment factors, including differences in lexical-resources reliability and the impacts of transitivity and multiple evidence. Evaluations show that the proposed model outperforms most prior systems while pointing at required future improvements.
منابع مشابه
A Probabilistic Setting And Lexical Coocurrence Model For Textual Entailment
This paper proposes a general probabilistic setting that formalizes a probabilistic notion of textual entailment. We further describe a particular preliminary model for lexical-level entailment, based on document cooccurrence probabilities, which follows the general setting. The model was evaluated on two application independent datasets, suggesting the relevance of such probabilistic approache...
متن کاملA Probabilistic Setting and Lexical Cooccurrence Model for Textual Entailment
This paper proposes a general probabilistic setting that formalizes a probabilistic notion of textual entailment. We further describe a particular preliminary model for lexical-level entailment, based on document cooccurrence probabilities, which follows the general setting. The model was evaluated on two application independent datasets, suggesting the relevance of such probabilistic approache...
متن کاملBar Ilan University Applied Textual Entailment
This thesis introduces the applied notion of textual entailment as a generic empirical task that captures major semantic inferences across many applications. Textual entailment addresses semantic inference as a direct mapping between language expressions and abstracts the common semantic inferences as needed for text based Natural Language Processing applications. We define the task and describ...
متن کاملTowards a Probabilistic Model for Lexical Entailment
While modeling entailment at the lexical-level is a prominent task, addressed by most textual entailment systems, it has been approached mostly by heuristic methods, neglecting some of its important aspects. We present a probabilistic approach for this task which covers aspects such as differentiating various resources by their reliability levels, considering the length of the entailed sentence...
متن کاملChinese Textual Entailment Recognition Enhanced with Word Embedding
Textual entailment has been proposed as a unifying generic framework for modeling language variability and semantic inference in different Natural Language Processing (NLP) tasks. By evaluating on NTCIR-11 RITE3 Simplified Chinese subtask data set, this paper firstly demonstrates and compares the performance of Chinese textual entailment recognition models that combine different lexical, syntac...
متن کامل